Kalimantacin A, B, and C, Novel Antibiotics Produced by *Alcaligenes* sp. YL-02632S

II. Physico-chemical Properties and Structure Elucidation

Tatsuhiro Tokunaga*, Kazuma Kamigiri^a, Masaya Orita, Toshiaki Nishikawa^b, Minoru Shimizu and Hidetoshi Kaniwa^c

Molecular Chemistry Research Lab., Yamanouchi Pharmaceutical Co., Ltd.,

21 Miyukigaoka, Tukuba-shi, Ibaraki 305, Japan

^aDrug Serendipity Research Lab., Yamanouchi Pharmaceutical Co., Ltd.,

1-1-8 Azusawa, Itabashi-ku, Tokyo 174, Japan

^bClinical Developement Coodination Dept., Yamanouchi Pharmaceutical Co., Ltd.,

23-1, Azumabashi 1-chome, Sumida-ku, Tokyo 130, Japan

°Analytical Science Reserch Lab., Yamanouchi Pharmaceutical Co., Ltd.,

180 Ozumi, Yaizu-shi, Shizuoka 425, Japan

(Received for publication August 30, 1995)

Kalimantacin A, B and C are new antibiotics produced by *Alcaligenes* sp. YL-02632S. Their structures were elucidated to be novel long chain structure compounds containing *O*-carbamoyl, amide and carboxylic acid moieties based on various 2D NMR experiments and MS analysis.

In the screening program for new antibiotics, we discovered novel antibiotics named kalimantacin A (1), B (2) and C (3) from the cultute broth of *Alcaligenes* sp. YL-02632S. Details of the taxonomy, fermentation, isolation and biological activities of kalimantacins are reported in the preceding paper.¹⁾ In the present article we describe the physico-chemical properties and the structural elucidation of 1, 2 and 3.

Kalimantacin A (1) was obtained as a white to pale yellow powder from the fermentation broth of *Alcaligenes* sp. YL-02632S by isolation procedures described in the preceding paper¹⁾. The molecular formula of **1** was determined to be $C_{30}H_{48}N_2O_7$ on the basis of positive-ion high resolution FAB-MS data $(M+H)^+$ m/z calcd: 549.3540, found: 549.3535). The IR spectral data had absorption bands at 3365 cm⁻¹ indicating the presence of -OH and/or -NH. An amide function was suggested by the absorption band at 1640 cm⁻¹, which clearly separated from a large carbonyl band at 1700 cm⁻¹. The physico-chemical properties of **1** are summarized in Table 1.

The ¹H and ¹³C NMR spectra of 1 in CDCl₃ are shown in Figs. 1 and 2. The ¹³C NMR spectrum of 1 showed 30 carbon signals which were assigned to five methyl, nine methylene, ten methine and six quaternary carbons by a DEPT experiment. The ¹H and ¹³C NMR spectral data of 1 are summarized in Tables 2 and 3.

From the analysis of the ¹H-¹H DQF COSY and

Table 1. Physico-chemical properties of kalimantacin A (1), B (2) and C (3).

	1	2	3 white to pale yellow powder	
Appearance	white to pale yellow powder	white to pale yellow powder		
$[\alpha]_{D}^{25}$	+56.3 (c 1.0, MeOH)	ND	ND	
Molecular formula	C ₃₀ H ₄₈ N ₂ O ₇	$C_{30} H_{48} N_2 O_7$	$C_{29} H_{46} N_2 O_7$	
FAB-MS (m/z)	549 (M+H)*	549 (M+H) ⁺	535 (M+H) ⁺	
HRFAB-MS (m/z)				
Found:	549.3535 (M+H)*	ND	ND	
Calcd:	549.3540			
UV λ _{max} nm(ε) (in MeOH)	228.5 (41,200)	230.0 (40,500)	234.0 (43,200)	
IR v (KBr) cm ⁻¹ 3365, 2935, 1700, 1640, 1380		3365, 2935, 1700, 1640, 1380	3365, 2935, 1700, 1640, 1380	
Solubility	Soluble in MeOH, acetone, AcOEt _ benzene, CHCl ₃	Soluble in McOH, acctone, AcOEt benzene, CHCl ₃	Soluble in MeOH, acetone, AcOEt benzene, CHCl ₃	
	Insoluble in hexane, H ₂ O	Insoluble in hexane, H ₂ O	Insoluble in hexane, H ₂ O	

ND: Not determined.

Fig. 2. ¹³C NMR spectrum of kalimantacin A (CDCl₃, 500 MHz).

HOHAHA spectral data of 1, four proton sequences, from 4-H to 6-H and 22-H, from 8-H to 16-H and 24-H, from 18-H to 20-NH, and from 29-H to 28-H, were established (Fig. 3). The ¹H-¹³C long-range couplings were observed from 2-H ($\delta_{\rm H}$ 5.69) to C-1 ($\delta_{\rm C}$ 169.6), C-3 ($\delta_{\rm C}$ 160.7), C-4 ($\delta_{\rm C}$ 48.9) and C-21 ($\delta_{\rm C}$ 18.9), from 21-H ($\delta_{\rm H}$ 2.15) to C-2 ($\delta_{\rm C}$ 116.7), C-3 ($\delta_{\rm C}$ 160.7), C-4 ($\delta_{\rm C}$ 48.9) in the HMBC² spectrum (Fig. 3). These data revealed the presence of a butenoic acid structure connected to C-4. The ¹H-¹³C long-range couplings were observed from the terminal methylene protons 23-H ($\delta_{\rm H}$ 4.74 and 4.80) to C-6 ($\delta_{\rm C}$ 43.2), C-8 ($\delta_{\rm C}$ 35.4) and C-7 ($\delta_{\rm C}$ 147.1), and from 6-H ($\delta_{\rm H}$ 1.75, 2.08) to C-7, C-23 ($\delta_{\rm C}$ 111.8) and C-8, thereby showing the presence of a vinylidene moiety bound to C-6 and C-8. The ¹H-¹³C long-range couplings observed from 16-H ($\delta_{\rm H}$ 2.27) and 18-H ($\delta_{\rm H}$ 2.57) to C-17 ($\delta_{\rm C}$ 211.5) suggested that a carbonyl group attached to C-16 and C-18.

Position	1 ^b	2 ^c	3°	
1-OH	d	······································		
2	5.69 (s)	5.65 (s)	5.65 (s)	
4	2.01 (m), 2.10(m)	1.91 (m), 2.20 (m)	1.93 (m), 2.20 (m)	
5	1.89 (m)	1.93 (m)	1.87 (m)	
6	1.75 (dd, J=13.5Hz, 8.6Hz), 2.08 (m)	1.88 (m), 2.07 (m)	2.10 (m)	
8	2.07 (m)	2.20 (m)	2.10 (m)	
9	2.24 (m), 2.30 (m)	2.00 (m)	2.10 (m), 2.29 (m)	
10	5.31 (dt, J=11.0Hz, 7.3Hz)	5.52 (dt, J=14.4Hz, 7.3Hz)	5.30 (dt, J=11.0Hz, 7.3Hz)	
11	5.95 (t, J=11.0Hz)	5.97 (dd,J=14.4Hz, 10.4Hz)	5.95 (t, J=11.0Hz)	
12	6.25 (dd, J=15.3Hz, 11.0Hz)	6.03 (dd, J=14.4Hz, 10.4Hz)	6.32 (dd, J=15.3Hz, 11.0Hz)	
13	5.58 (dt, J=15.3Hz, 7.3Hz)	5.57 (dt, J=14.4Hz, 7.3Hz)	5.61 (dt, J=15.3Hz, 7.3Hz)	
14	1.98 (m), 2.07 (m)	1.90 (m), 2.08 (m)	1.92 (m), 2.05 (m)	
15	2.08 (m)	2.06 (m)	2.09 (m)	
16	2.27 (m), 2.44 (dd, J=16.5Hz, 5.0Hz)	2.28 (dd, J=16.5Hz, 7.3Hz), 2.48 (m)	2.30 (m), 2.51 (m)	
18	2.57 (m)	2.55 (m)	2.52 (m)	
19	4.17 (m)	4.14 (m)	4.13 (m)	
20	3.35 (m)	3.16 (m), 3.28 (m)	3.22 (m)	
20-NH	6.56 (br)			
21	2.15 (s)	2.12 (s)	2.12 (s)	
22	0.86 (d, J=6.7Hz)	0.84 (d, J=5.5Hz)	0.85 (d, J=6.7Hz)	
23	4.74 (s), 4.80 (s)	4.75 (s), 4.90 (s)	4.75 (s), 4.80 (s)	
24	0.89 (d, J=6.7Hz)	0.89 (d, J=6.7Hz) 0.90 (d, J=6.7Hz)		
26	2.49 (m)	2.50 (m)	2.39 (m), 2.48 (m)	
27	4.90 (m)	4.90 (m)	5.07 (m)	
28	1.28 (d, J=6.1Hz)	1.23 (d, J=6.7Hz)	1.28 (d, J=6.7Hz)	
29	1.15 (d, J=7.5Hz)	1.10 (d, J=6.7Hz)		
30-NH ₂	5.37 (br)			

Table 2. ¹H NMR data^a of kalimantacin A (1), B (2) and C (3).

 a $\,^{1}\text{H}$ NMR spectra were recorded at 500 MHz.

^b CDCl₃ as solvent.
^c CD₃OD as solvent.

^d Not detected.

Position	1 ^b	2 ^c	3 ^c	Position	1 ^b	2 ^c	3 ^c
1	169.6	170.1	170.1	16	50.3	51.1	51.2
2	116.7	118.3	118.4	17	211.5	211.7	211.5
3	160.7	160.5	160.4	18	46.9	48.6	48.3
4	48.9	49.7	49.1	19	67.2	67.8	67.6
5	28.9	30.1	30.2	20	44.2	45,9	46.1
6	43.2	44.9	44.9	21	18.9	18.8	18.9
7	147.1	148.7	148,7	22	19,7	19.8	19.8
8	35.4	36.5	36.7	23	111.8	112.0	112.2
9	26.1	32.0	27.1	24	19.6	20.1	20.1
10	129.7	131.1	130.5	25	174.6	177.1	173.2
11	128.7	133.7	130.0	26	46.8	47.5	43.9
12	127.4	132,0	128.7	27	73.4	73.7	69.8
13	132.2	132.9	133.6	28	17.9	18.1	20.3
14	40.0	40.9	41.2	29	13.7	14.1	
15	29.2	30.5	30.5	30	157.2	159.1	159.2

Table 3. 13 C NMR data^a of kalimantacin A (1), B (2) and C (3).

^a ¹³C NMR spectra were recorded at 125 MHz.

^b CDCl₃ as solvent.
^c CD₃OD as solvent.

The ¹H-¹³C long-range couplings observed from 20-NH ($\delta_{\rm H}$ 6.56) and 29-H ($\delta_{\rm H}$ 1.15) to C-25 ($\delta_{\rm C}$ 174.6) showed the presence of an amide group connected to C-20 and C-26. Taking the molecular formula in consideration, the remaining quaternary carbon C-30 ($\delta_{\rm C}$ 157.2) which have ¹H-¹³C long-range coupling with 27-H ($\delta_{\rm H}$ 4.90) was suggested to be a carbamoyl or carboxy carbon. The elimination of fragment ion peak at *m*/*z* 61 in 1 by means of the B/E linked scan method of the FAB-MS indicated that the elements of carbamic acid have been lost³.

carbon C-1 was decided to be a carboxylic carbon. The geometry of trisubstituted double bond (C-2) was assigned as *E* form because of the presence of NOE between 2-H ($\delta_{\rm H}$ 5.69) and 4-Ha ($\delta_{\rm H}$ 2.10) observed in the NOESY spectrum and the chemical shift of methyl carbon C-21 ($\delta_{\rm C}$ 18.9) of 1^{4,5)}. The geometries of the two disubstituted double bonds, C-10 and C-12, were determined to be 10*Z* and 12*E* by the coupling constants, $J_{10,11} = 11.0$ Hz and $J_{12,13} = 15.3$ Hz. The planar structure of **1** was thus elucidated as shown in Fig. 4.

Therefore, the quaternary carbon C-30 was determined

to be a carbamoyl carbon. As a result the quaternary

Kalimantacin B (2) has the same molecular weight of 548 as that of 1 confirmed by the observation peak at m/z 549 $(M+H)^+$, m/z 547 $(M-H)^-$ and m/z 571 $(M+Na)^+$ by addition of NaCl in FAB-MS. The

connectivities between protons and carbons by 2D NMR experiments of 2 coincided with those of 1, except for the differences of the chemical shifts (¹H, ¹³C) of conjugated diene moiety (C-10 and C-12) and the adjacent methylene carbon (C-9). The deshielded ¹³C chemical shift ($\delta_{\rm C}$ 32.0) of C-9 of 2 comparing with that ($\delta_{\rm C}$ 26.1) of 1 and the coupling constant (J=14.4 Hz) between 10-H and 11-H showed the geometrical change of the disubstituted double bond (C-10) from Z to E. Thus, the structure of 2 was elucidated as shown in Fig. 4 with the E-E configuration in the conjugated diene moiety.

The molecular weight of kalimantacin C (3) was determined to be 535 by the observation peak at m/z 535 $(M+H)^+$, 533 $(M-H)^-$ and 557 $(M+Na)^+$ by addition of NaCl in FAB-MS. The structure of 3 was elucidated to be 26 demethyl derivative of 1 because of the decrease of the molecular weight by 14 mass units, the replacement of one methyl signal in the ¹³C NMR spectrum by a methylene carbon ($\delta_C 43.7$) and the ¹H-¹³C long-range coupling between its appending proton and C-28. The structures of both 2 and 3 are shown in Fig. 4. The ¹H and ¹³C NMR spectral data of 2 and 3 are summarized in Tables 2 and 3. Further studies on the absolute stereochemistry are in progress.

Fig. 3. ¹H-¹H DQF COSY, HOHAHA and HMBC experiments of kalimantacin A. —: ¹H-¹H couplings obtained from ¹H-¹H DQF COSY and HOHAHA. \rightarrow : ¹H-¹³C long-range couplings obtained from HMBC.

Fig. 4. The structure of kalimantacin A, B and C.

Experimental

General procedures

IR spectra were recorded on a Hitachi 260-50 infrared spectrophotometer. Fast atom bombardment mass spectra (FAB-MS) were obtained with a VG ZAB-VSE and a JEOL DX300 mass spectrometer using nitrobenzyl alcohol-DMSO (positive ion) as matrix. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ALPHA500 FT NMR spectrometer.

Acknowledgments

We thank Prof. H. SETO, Insutitute of Molecular and Cellular Biosciences, the University of Tokyo, for helpful discussion.

References

1) Kamigiri, K.; Y. Suzuki, M. Shibazaki, M. Morioka, K. Suzuki, T. Tokunaga, B. Seiawan& R. M. RANTIAMODJO: Kalimantacins A, B and C, novel antibiotics from *Alcaligenes* sp. YL-02632S. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiotics $49: 136 \sim 139, 1996$

- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiplebond connectivity by 2D multiple quantum NMR. J.Am. Chem. Soc. 108: 2093 ~ 2094, 1986
- 3) PAIK, S.; S. CARMEIL, J. CULLINGHAM, R. E. MOORE, G. M. L. PATTERSON & M. A. TIUS: Mirabimide E, an Unusual N-Acylpyrrolinone from the Blue-Green Alga Scytonema mirabile: Structure Determination and Synthesis. J. Am. Chem. Soc. 116: 8116~8125, 1994
- OKUBO, A.; H. KAWAI, T. MATSUNAGA, T. CHUMAN, S. YAMAZAKI & S. TODA: Spin-lattice relaxation time as a useful indicator for the ¹³C-NMR assignment of terminal *cis*- and *trans*-methyls in 2-methyl-1-propenyl moiety. Tetrahedron Lett. 21: 4095~4096, 1980
- CHAIN, S. E. B. & G. MELLOWS: Pseudomonic Acid. Part 3. Structure of Pseudomonic Acid B. J. Chem. Soc., Perkin Trans.1 1977: 318~322